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We consider the reversible adsorption of particles �monomers with exclusion nearest-neighbor sites� on a
one-dimensional lattice, where adsorption occurs on a finite fraction of sites selected randomly. By comparing
this one-dimensional system to the pure system where all sites are available for adsorption, we show that when
the activity goes to infinity, there exists a mapping between this model and the pure system at the same density.
By examining the susceptibilities, we demonstrate that there is no mapping at finite activity. However, when
the site density is small or moderate, the mapping exists up to second order in site density. We also propose and
evaluate approximate approaches that may be applied to systems where no analytic result is known.
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I. INTRODUCTION

Over the years a significant and sustained research effort
has been directed at understanding the effect of disorder in
adsorption processes �1,2�. This is commensurate with the
widespread occurrence of disorder in many different kinds of
adsorption: e.g., gases on solid surfaces and in porous media
�3�, biomolecules �4� and colloidal particles �5,6� adsorbing
from solution onto solid surfaces, and catalysis �7–10�.

From a theoretical perspective, the challenge is how to
incorporate disorder into statistical mechanical descriptions
of the equilibrium and kinetic properties. In the absence of
exact results, it is desirable to develop approximate treat-
ments, possibly by mapping the system containing disorder
to a pure system with no disorder.

One way to represent disorder is the random site surface
�RSS� in which adsorption sites are uniformly and randomly
distributed on a plane. The adsorbent molecules, represented
by hard spheres, bind to these immobile sites. Steric exclu-
sion is incorporated in the model in that a site is available for
adsorption only if the nearest occupied site is at least one
particle diameter away. The model is characterized by the
dimensionless site density.

This model was originally studied in the context of irre-
versible adsorption where it was shown that there exists a
mapping to an irreversible adsorption process on a continu-
ous surface �11�. The existence of this mapping, which is
exact and valid in any dimension, means that from knowl-
edge of the amount adsorbed as a function of time in a con-
tinuous space we can calculate the amount adsorbed on the
RSS surface of a given site density at any time. Adamczyk
and co-workers have successfully applied the model and its
extensions �e.g., allowing for finite-size adsorption sites� to
the adsorption of latex spheres on mica surfaces �5,6�.

More recently, Oleyar and Talbot �12� studied the revers-
ible version of the RSS model in which hard spheres adsorb
and desorb from immobilized sites in a plane. Here the quan-
tities of interest are the adsorption isotherm, i.e., the amount
adsorbed as a function of the bulk phase activity of the solute
and the structure of the adsorbed layer. Somewhat surpris-
ingly, a theoretical description of the system in equilibrium

�even when no phase transitions intervene� is more difficult
than in the irreversible case since there appears to be no
exact mapping to the reversible adsorption on a continuous
surface. Moreover, in one dimension where the exact solu-
tion of the corresponding model without disorder—i.e., hard
rods on a line is well known �13�—attempts to solve the
equilibrium RSS have so far proved unsuccessful �despite
the fact that many one-dimensional statistical mechanical
models have exact solutions�.

It is the purpose of this article to study a simpler model:
the adsorption of monomers with exclusion of nearest-
neighbor sites� on a one-dimensional lattice. Disorder is in-
troduced by randomly eliminating a given fraction of the
sites. The advantage of the lattice model is that essentially
exact solutions are available for both the pure and disordered
systems. This permits us to examine the existence of a pos-
sible mapping between the two. We show that there is a
mapping in the limit of small and large activities, but not in
general. In the absence of a full mapping it is still useful to
investigate approximate approaches that permit an accurate
description of the thermodynamics of the disordered system.
We note that Oshanin et al. �7,8� studied a similar lattice
model for the catalytic reaction A+A→0.

We show that the introduction of an effective activity
leads to highly accurate estimates of the thermodynamic
properties of the disordered system. This methodology can
be generalized to more realistic, off-lattice models.

II. EXACT SOLUTIONS

A. Pure model

The system consists of adsorbed particles which are in
equilibrium with a bulk phase containing an adsorbate at
activity �. The particles bind to sites of a one-dimensional
lattice. Occupancy of one site by a particle center excludes
occupancy of the nearest-neighbor sites by another particle
center: See Fig. 1. We note that this model is isomorphic to
the adsorption of dimers on the dual lattice �14�. For a sys-
tem consisting of N adsorption sites the adsorbed phase can
be formally described by the “grand canonical” partition
function
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�*�N,�� = �
��i=0,1�

��N�
i=1

N−1

��i�1 − �i�i+1� . �1�

Here �i is the occupancy of the site i, � exp���� is the ac-
tivity, and free boundary conditions are imposed. We use the
superscript � to denote a pure system—i.e., one in the ab-
sence of disorder. The exact calculation of the partition func-
tion is a simple exercise using the transfer matrix approach:
See the Appendix.

The result can be expressed as

�*�N,�� = 1 + �
n=1

nmax 	N − n + 1

n

�n, �2�

where nmax= ��N+1� /2� is the maximum number of particles
that can be adsorbed on the lattice of size N ��x� represents
the integer part of x� �7,8�.

The average number of particles adsorbed on a chain of N
sites at an activity � is given by

NN��� = �	 � ln �*��,N�
��


 , �3�

and the fraction of occupied sites can be computed as

�*�N,�� =
NN���

N
, �4�

which in the thermodynamic limit is given by

�*��,�� =
2�

�1 + �1 + 4���1 + 4�
. �5�

This has the expected behavior in the limits of small �Lang-
muir isotherm� and large �half of the sites are occupied by
particle centers� activities. The susceptibility, or fluctuation
in the number of adsorbed molecules, is given by

���� =
�n2 − �n2

N
= �

��

��
. �6�

After some calculations one obtains that, in the thermody-
namic limit,

�*��� = ��1 − ���1 − 2�� . �7�

B. Model with disorder

We now consider a diluted site model in which only a
fraction of randomly selected sites are present. The grand
partition function in this case is given by

���,�	�� = �
��i=0,1�

��N	N�
i=1

N−1

��i	i�1 − �i�i+1	i	i+1� , �8�

where 	i=0 or 1 denotes the absence or presence of an ad-
sorption site i. The probability of finding an adsorbing site is
given by

P�	� = �s
	,1 + �1 − �s�
	,0. �9�

There are no correlations between sites. A sample configura-
tion is shown in Fig. 2.

For a given site configuration �	i�, the number of clusters
of exactly l contiguous adsorption sites is given by

nl��	i�� = �
i=1

N

�1 − 	i−1�	i ¯ 	i+l�1 − 	i+l+1� . �10�

The mean number of clusters of size l is then given by

nl = N�1 − �s�2�s
l . �11�

One can check that the sum rule characterizing the total num-
ber of occupied sites is verified; namely,

�
l=1

�

lnl = N�s. �12�

Note that the thermodynamic limit has been taken in the two
equations: corrections for a finite system occur for 1−�s
�1/N and need not be included in these calculations.

Since the adsorption-site occupancies are quenched vari-
ables, the average over disorder is taken over the logarithm
of the partition function, with the following result:

ln����s,��� = �
l=1

�

nl ln �*�l,�� , �13�

where we have used the result for the partition function of a
finite lattice of l connected sites �i.e., the pure model� with
free boundary conditions. The mean density of adsorbed par-
ticles is given by

���s,�� =
�

N
	 �ln����s,���

��

 =

1

N
�
l=1

�

nlNl��� , �14�

where

FIG. 1. �Color online� Adsorption of particles �with exclusion of
the nearest-neighbor sites� on a pure lattice �bottom line� and
equivalent representation with dimers on the dual lattice �top line�.
Solid circles or crosses represent adsorption sites, large open circles
show adsorbed monomers, and squares correspond to dimers.

FIG. 2. �Color online� Adsorption of particles �with exclusion of
the nearest-neighbor sites� on a diluted lattice. The symbols are the
same as in Fig. 1, and the points represent the lattice vacancies.
Note that the equivalence to a dimer representation is no longer
straightforward and is not shown here.
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Nl��� = �
� ln��*�l,���

��
�15�

is the average number of particles on a �full� lattice of size l
with free boundary conditions.

For low site density, one easily obtains

���s,�� =
�

1 + �
�s − 2

�2

�1 + ���1 + 2��
�s

2

+
�3 + 2���3

�1 + 2���1 + 3� + �2��1 + ��
�s

3

− 2
�4�3� + 2�

�1 + 4� + 3�2��1 + 3� + �2��1 + 2��
�s

4 + O��s
5� .

�16�

On the other hand, whatever the site density, when the
activity �→�, Nl���→p for l=2p and Nl���→p+1 for l
=2p+1, so that one obtains

���s,�� = �1 − �s�2�
p=1

�

p�s
2p	1 +

1

�s

 , �17�

which gives

���s,�� =
�s

�s + 1
, �18�

a result identical to the case of hard rods onto a line with
random sites �15�. �Note, however, that �s cannot take any
positive real value and is bounded by 1.�

In order to investigate the existence of a mapping between
this model and the pure model, we consider the thermody-
namic quantities; in particular, we focus on the susceptibility.

In the presence of quenched disorder, there are two kinds
of susceptibility: the “connected” susceptibility �c��s ,�� de-
scribing the thermal fluctuations of the density of adsorbed
particles and the “disconnected” susceptibility �d��s ,�� de-
scribing the disorder-induced fluctuations of the density of
adsorbed particles �16�.

The connected susceptibility is given by the thermody-
namic relation �17�

�c��s,�� = �
����s,��

��
. �19�

For large activities, the connected susceptibility goes to 0 as
1/�. This result has a simple physical interpretation. For a
given realization of the disorder, the densest configuration is
selected when �→�. In this limit fluctuations are sup-
pressed, and the connected susceptibility vanishes.

The “disconnected” �sometimes called “blocking” in the
context of fluids in porous media �3�� susceptibility is given
by the second cumulant �in the average over the disorder� of
the number of adsorbed particles for a given configuration of
the disorder, �lnl��	i��Nl���:

�d��s,�� =
1

N
�

l,l�=1

�

�nlnl� − nl nl��Nl���Nl���� . �20�

The different terms of the disorder average nlnl� can be
obtained by sorting out configurations of overlapping and
nonoverlapping clusters.

�i� When l= l�, there is a contribution when the two clus-
ters are in the same location, and nlnl�=
ll�N�1−�s�2�s

l .
�ii� When two clusters have a boundary in common,

nlnl�=2N�1−�s�3�s
l+l�, the factor of 2 coming from the two

possibilities, right and left.
�iii� When two clusters have overlapping sites, nlnl�=0

and the number of possibilities is equal to �l+ l�+1−
ll��.
�iv� For all other configurations, there is no overlap be-

tween clusters and nlnl�=nl nl�: this corresponds to N�N− l
− l�−3� configurations.

After some calculations, one obtains that

nlnl� − nl nl� = N�1 − �s�2�s
l�
ll� + 2�1 − �s��s

l�+1

− �l + l� + 1��1 − �s�2�s
l�� . �21�

In the large-activity limit �→�, one easily shows from
Eqs. �2� and �3� that

�
l=1

�

�sNl��� =
�s

�1 − �s�2�1 + �s�
�22�

and

�
l=1

�

l�sNl��� =
�s�1 + �s + 2�s

2�
�1 − �s�3�1 + �s�2 . �23�

From Eqs �20�–�23� the following expression of �d��s ,��
now results:

�d��s,�� =
�s�1 − �s�
�1 − �s�3 . �24�

Finally, by inverting Eq. �18�, the disconnected susceptibility
is obtained as

�d��s,�� = ��1 − ���1 − 2�� , �25�

which is identical to the susceptibility in a pure system at the
same density �Eq. �7��. Since �c��s ,��=0, this result estab-
lishes that the total fluctuations of the adsorbed number of
particles are the same in the disordered system at infinite
activity and in the pure system at the same mean adsorbed
density �. This points to the existence of an exact mapping
between the two systems under these conditions. The map-
ping can actually be proven by extending the above consid-
erations to the correlation functions.

Is the mapping exact for finite activities? In order to an-
swer this question, we compare �(���s ,��) and �c��s ,��
+�d��s ,�� for small values of �s. The first orders of the ex-
pansions read
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�*
„���s,��… =

�

� + 1
�s −

�2�8� + 5�
�1 + 2���� + 1�2�s

2

+
�3�18�3 + 69�2 + 66� + 17�

�1 + 2���1 + 3� + �2��� + 1�3�s
3 + O��s

4� ,

�26�

where we have combined Eqs. �7� and �16�, and

�c��s,�� + �d��s,��

=
�

� + 1
�s −

�2�8� + 5�
�1 + 2���� + 1�2�s

2

+
�3�18�2 + 49� + 17�

�1 + 3� + �2��� + 1�2�1 + 2��
�s

3 + O��s
4� .

�27�

It is noticeable that the expansions coincide at first and
second order, but differ at third order and above. We conjec-
ture that the absence of exact mapping at finite activities is
independent of the model �monomers with k-nearest-
neighbor exclusion, hard rods, …� and of the dimension. In
addition, one can see that the two expansions approach the
same limit when the activity is very large. This means that
they differ maximally for intermediate values of the activity.
In any case, the above considerations prove that no mapping
exists between the correlation functions of the disordered
system at finite activity and those of the pure system at the
same density, ���s ,��.

III. APPROXIMATE SCHEMES

The lattice model studied here is exceptional in that we
know its exact solution, even when disorder is present. More
often, we will have only a partial description: e.g., the cluster
expansion that applies at low site density in the case of the
RSS �12�. In these cases, we seek approximate schemes that
can provide an accurate description of the adsorption iso-
therms for the full range of site densities and activities. In
this section we propose two such schemes and evaluate their
accuracy by comparing with the exact results.

One approach involves a partial resummation of the site
density expansion of Eq. �14�. Specifically, retaining explic-
itly the first term that appears at all orders we can write

���s,�� = �
l=1

� �− 	 − �

1 + �

l

+ Fl��s,����s
l , �28�

where Fl��s ,�� represents the remaining terms in the exact
expansion and, consistent with these terms, has the property
that

Fl��s,�� → 0 �29�

when �→0 and �→�.
The simplest approximation is to set Fl���=0, resulting in

the approximate isotherm

���s,�� =
��s

��s + 1 + �
, �30�

which, as expected, has the correct behavior in the limits of
small and large activities.

In order to highlight the deviations from the exact results,
we have plotted in Fig. 3 the density � as a function of the
activity � for various values of the site density �s. The ap-
proximate isotherms always overestimate the adsorbed den-
sity for all activities. The deviations increase with the site
density and are most pronounced at intermediate activities.
In order to understand the origin of this discrepancy, we have
performed an asymptotic expansion of Eq. �14� at large ac-
tivity,

���s,�� �
�s

1 + �s
−

1

6�

�s�− �s
3 + 3�s + 6�

�1 + �s�3�1 − �s�
+ ¯ , �31�

and compared with that of Eq. �30�,

���s,�� �
�s

1 + �s
−

�s

��1 + �s�2 + ¯ . �32�

We note that when �s→0, Eqs. �31� and �32� coincide. This
explains the very accurate description of the approximate
isotherm in this limit. Conversely, when �s→1, one obtains

���s,�� �
�s

1 + �s
−

1

6�1 − �s��
, �33�

whereas no such combination in ��1−�s� appears in Eq.
�32�.

By including the leading term of the asymptotic behavior,
Eq. �31�, the agreement with the exact result is only correct
up to intermediate �s. It would be necessary to add additional

l n l

K 4 K 2 0 2 4 6 8

r

0 . 1

0 . 2

0 . 3

0 . 4

FIG. 3. �Color online� Density � as a function of activity � for
�s=0.4,0.6,0.9 calculated via the exact formula, Eq. �14� �full
curves�, via Eq. �30� �dotted lines�, and via Eq. �36� to the zeroth
order �f��s ,��=1� �dashed curve� �see text�.
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terms when �s goes to 1 in order to have a good approxima-
tion of the isotherms. Such a procedure rapidly becomes very
complicated and is not useful for more realistic models. The
asymptotic analysis seems to indicate that the neglected
terms of the series correspond to the existence of an
asymptotic series whose variable is ��1−�s���−1.

An alternative approach uses an effective activity �eff in-
stead of ���s ,��. The idea is to estimate the density in the
disordered system with

���s,�� = �*
„�eff��,�s�… , �34�

where �* corresponds to the density at equilibrium given by
Eq. �5�. Note that, since there is no exact mapping to a pure
system for a finite activity �, even if we could find the func-
tion �eff�� ,�s� that satisfies Eq. �34�, it would not give exact
results for other thermodynamic quantities. There is, how-
ever, merit in this approach because, as we have shown in
previous sections, there is a mapping in the limits of large
and small activities. Thus, by using Eq. �31� with Eq. �5�,
one obtains the asymptotic expansion

1

�eff
=

�− 1 + �s�2

�s
+

6 + 3�s − �s
3

6�s�
+ O��−2� . �35�

The coefficient of the leading term of this expansion is a
function of �s which behaves simply in the two limits �s
→0 and �s→1. By combining with the low-activity expan-
sion �1/�eff=1/ ���s��, we propose the following interpola-
tion scheme:

1

�eff
=

�− 1 + �s�2

�s
+

f��,�s�
��s

, �36�

where f�� ,�s� is an �n ,n� Padé approximant. The isotherms
are then calculated using Eq. �34�. As can be seen in Fig. 3,

even to zeroth order �f�� ,�s�=1�, this route gives a signifi-
cantly better approximation than Eq. �30�. By matching the
exact asymptotic behavior, Eq. �33�, as well as the second-
order low-activity expansion, one obtains

f��,�s� =
1 + a��s��
1 + b��s��

, �37�

where

a��s� =
6 + 2�s

3 + 9�s
2 − �s

5 + 9�s − �s
4

6 − 3�s − �s
3 �38�

and

b��s� = 6
�s�1 + �s + �s

2�
6 − 3�s − �s

3 . �39�

Since the zeroth-order approximation is practically indis-
tinguishable from the exact result in the isotherm plot �Fig.
3�, we highlight the differences between the two by plotting
the effective activity versus the activity for high density �s in
Fig. 4. The horizontal line corresponds to the asymptotic
value, the solid line to the exact result, the dotted line to the
zeroth order, and the dashed line to the first order. We note
that this method converges very rapidly to the exact result,
even at high �s, which is very encouraging for systems where
no exact result is known.

We can thus conclude from the present study that �i� there
is a mapping between the adsorbed configurations of par-
ticles �monomers with exclusion of the nearest-neighbor
sites� on a diluted one-dimensional lattice and those on a full
lattice at the same adsorbed density in the two limits of small
and large activities; �ii� this mapping does not extend to finite
activities. However, a successful approximation scheme is
provided by considering a pseudomapping through the intro-
duction of an effective activity. The scheme has been tested

l n l

2 4 6 8 1 0 1 2 1 4

l e f f

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

FIG. 4. �Color online� Effective activity �eff as a function of �
for �s=0.9 calculated via the exact formula, Eq. �14� �solid curve�,
via Eq. �36� to the zeroth order �dotted curve� and to the first order,
Eq. �37� �dot-dashed curve�.
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1
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(λ
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N
(∞

)

FIG. 5. �Color online� Adsorption isotherms on a pure chain of
N sites �N=2,4 ,8 ,16,32,64, top to bottom�. The dashed line is the
thermodynamic limit.
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on the present one-dimensional lattice system for which we
have also obtained exact expressions, and work is in progress
to apply it to more realistic situations.

APPENDIX: PURE MODEL

To obtain an analytic expression for the partition function
of the pure system we use the transfer matrix method: see,
e.g., �18�. Using this approach, Eq. �1� can be rewritten as

�*��,N� = Tr�TNA� , �A1�

where

T = 	1 1

� 0

 �A2�

and

A = 	0 1

1 1

 . �A3�

Performing the trace operation, the partition function be-
comes

�*��,N� =
�1

N+1 − �2
N+1

�1 − �2
+ �

�1
N − �2

N

�1 − �2
, �A4�

where �1 and �2 are the eigenvalues of the matrix T,

�1,2 =
1 ± �1 + 4�

2
. �A5�

For finite N the partition function is a polynomial in �:
e.g., �*�� ,1�=1+�, �*�� ,2�=1+2�, �*�� ,3�=1+3�+�2,
�*�� ,4�=1+4�+3�2 , . . .. In the thermodynamic limit, only
the largest eigenvalue contributes to the thermodynamic
quantities and we have

lim
N→�

ln��*��,N��
N

= ln	1 + �1 + 4�

2

 . �A6�

Some isotherms for different values of N are shown in
Fig. 5. Note that the thermodynamic limit is approached
rather slowly.
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